Age-dependent increase of brain copper levels and expressions of copper regulatory proteins in the subventricular zone and choroid plexus
نویسندگان
چکیده
Our recent data suggest a high accumulation of copper (Cu) in the subventricular zone (SVZ) along the wall of brain ventricles. Anatomically, SVZ is in direct contact with cerebrospinal fluid (CSF), which is secreted by a neighboring tissue choroid plexus (CP). Changes in Cu regulatory gene expressions in the SVZ and CP as the function of aging may determine Cu levels in the CSF and SVZ. This study was designed to investigate the associations between age, Cu levels, and Cu regulatory genes in SVZ and plexus. The SVZ and CP were dissected from brains of 3-week, 10-week, or 9-month old male rats. Analyses by atomic absorption spectroscopy revealed that the SVZ of adult and old animals contained the highest Cu level compared with other tested brain regions. Significantly positive correlations between age and Cu levels in SVZ and plexus were observed; the SVZ Cu level of old animals was 7.5- and 5.8-fold higher than those of young and adult rats (p < 0.01), respectively. Quantitation by qPCR of the transcriptional expressions of Cu regulatory proteins showed that the SVZ expressed the highest level of Cu storage protein metallothioneins (MTs), while the CP expressed the high level of Cu transporter protein Ctr1. Noticeably, Cu levels in the SVZ were positively associated with type B slow proliferating cell marker Gfap (p < 0.05), but inversely associated with type A proliferating neuroblast marker Dcx (p < 0.05) and type C transit amplifying progenitor marker Nestin (p < 0.01). Dmt1 had significant positive correlations with age and Cu levels in the plexus (p < 0.01). These findings suggest that Cu levels in all tested brain regions are increased as the function of age. The SVZ shows a different expression pattern of Cu-regulatory genes from the CP. The age-related increase of MTs and decrease of Ctr1 may contribute to the high Cu level in this neurogenesis active brain region.
منابع مشابه
کلسیفیکاسیون فیزیولوژیک داخل جمجمهای در غده پینهآل و شبکه کوروئید در مراجعهکنندگان به بخش سیتی اسکن بیمارستان امام رضا (ع) بیرجند در سالهای 1376 لغایت 1385
Background and Aim: Intracranial physiologic calcification is not accompanied by any evidence of disease and has no demonstrable pathological cause. It is often due to calcium deposition in the blood vessels of different structures of the brain. Computed tomography (CT) is the most sensitive means of detection of for this calcification. The aim of this study was the assessment of the intracrani...
متن کاملStudy of Basement Membrane Type IV Collagen Appearance in the Brain Choroids Plexus of Mouse Fetuses
Introduction & Objective: The brain choroids plexus (BCP) plays an important role in the cerebrospinal fluid (CSF) production, but its characterization is still incomplete. Collagen type IV, is one of the most important proteins of basement membrane (BM) and extracellular matrix (ECM) of BCP. In the present study we investigated the differential period of type IV collagen in basement membrane...
متن کاملCopper transport to the brain by the blood-brain barrier and blood-CSF barrier.
The mechanism of copper (Cu) transport into the brain is unclear. This study evaluated the main species and route of Cu transport into the brain using in situ brain perfusion technique, and assessed the levels of mRNA encoding Cu transporters using real time RT-PCR. Free (64)Cu uptake in rat choroid plexus (CP), where the blood-cerebrospinal fluid barrier (BCB) is primarily located, is about 50...
متن کاملAging results in copper accumulations in glial fibrillary acidic protein-positive cells in the subventricular zone.
Analysis of rodent brains with X-ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X-ray absorption spectroscopy we determined the copper (I) oxidation state an...
متن کاملMechanism of copper transport at the blood-cerebrospinal fluid barrier: influence of iron deficiency in an in vitro model.
Copper (Cu) is an essential trace element that requires tight homeostatic regulation to ensure appropriate supply while not causing cytotoxicity due to its strong redox potential. Our previous in vivo study has shown that iron deficiency (FeD) increases Cu levels in brain tissues, particularly in the choroid plexus, where the blood-cerebrospinal fluid (CSF) barrier resides. This study was desig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2015